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Abstract: Until recently, a toxinologist’s tasks involved the search for highly toxic or lethal toxins in animal venoms that
could explain the harmful effects in clinically observed symptoms. Most of these toxins were put on evidence using a function
to structure approach, in which a biological phenomena observation usually guided the isolation and characterization of the
causative molecule. Paving this way, many toxins were promptly purified because of their readily observed effect. Nevertheless,
small molecules with micro-effects that are not easily visualized can be relatively neglected or poorly studied. This situation has
changed now with the advent of the sensitivity, resolution and accuracy of techniques such as mass spectrometry and proteomic
approaches used in toxinology. Taking advantage of these methodologies, small peptides with ‘newly exploited’ biological activities
such as vasoactive, hormone-like, antimicrobial and others have been recently given much more attention, enlarging the known
repertoire of bioactive molecules found in animal venoms. This article aims to review current knowledge on small biologically
active peptides (<3 kDa) found in arthropod venoms and discuss their potentialities as new drug candidates or therapeutic lead
compounds. Copyright  2005 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

Animal venoms have been broadly recognized as one
of the main sources of biologically active molecules.
In fact, animal venoms are a successful evolutionary
outcome that has evolved differently along Metazoa
Phylum in both predatory and defense senses. To
illustrate this extraordinary repertoire, Theakston and
Kamiguti [1] have listed more than 2500 animal toxins
and other natural products that showed any biological
activity. This number tends to increase enormously,
since it has been demonstrated that the number of
molecules can easily reach 50–300 in each venom,
although many of them are still unknown to date [2–9].

Such a richness can be useful to biotechnology in
many ways, with the prospection of new drug candi-
dates or new chemical entities – that can be used as
therapeutic lead compounds – being the most promis-
ing. A rough classification of toxins can be made on the
basis of their chemical nature (proteins, glycoproteins,
peptides, alkaloids, polyamines, biogenic amines and
others), their pharmacological or biological effects (neu-
rotoxins, myotoxins, vasoactive peptides, hemolytic,
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cytolytic, necrotic, hemorrhagic, anti-inflammatory,
antitumoral, analgesic, antimicrobial and others), their
molecular level effects (ionic channel ligands, agonists
or antagonists of ionotropic or metabotropic receptors,
enzymes, enzymatic inhibitors, others) and, finally, on
the basis of their sub-molecular binding sites (such as
α- and β-toxins from scorpion venom that bind sites 3
and 4 respectively, from sodium channels).

It is interesting to note that among the myriad of
molecules that can be found in animal venoms, many
of them have their molecular level actions related
to receptors and enzymes, which constitute the two
main classes of targets for drug action [10]. It is
also noteworthy that many of the worldwide top-
selling pharmaceutical products are natural products
or synthetic and semisynthetic analogs of natural
products [11], and yet, proteinaceous molecules and
their scaffold templates are poorly exploited.

In this review, attention has been paid to small
peptides (up to 3 kDa) from arthropod venom sources
that act as hormone-like, vasoactive or antimicrobial
substances and, for that reason, can be envisaged
both as potential drugs and as lead compounds by
the pharmaceutical industry.

AN OVERVIEW ON NEGLECTED PEPTIDES

Small peptides such as hormones, neuropeptides,
cytokines and enzyme inhibitors play a key role in many

Copyright  2005 European Peptide Society and John Wiley & Sons, Ltd.



NEGLECTED PEPTIDES FROM ARTHROPOD VENOMS 671

physiological and regulatory processes that maintain
the steady-state of the organism but, surprisingly,
have been put aside from many proteomic projects
[12]. However, the interest in these small structures
is increasing as the access to microscale analytical
technologies, such as mass spectrometry, and to
peptide synthesis is becoming affordable.

Frequently, small peptides are represented in very
low concentrations in the venom of arthropods and
it is a tedious and cumbersome task to gather enough
material to be analyzed by conventional analytical tech-
niques. Therefore, technical difficulties in addition to
the poorly visualized toxicological effects, inherent to
many small bioactive peptides, were responsible for tox-
inologists neglecting some of these molecules for many
years.

With modern analytical platforms, very small quan-
tities of raw material are needed to profile a given
venom, with the possibility to sequence small pep-
tides by using a combination of liquid chromatography
coupled with mass spectrometry (LC/MS) and liquid
chromatography coupled with tandem mass spectrom-
etry(LC/MS/MS), for example. Chemical synthesis of
these peptides enables further characterization of their
biological activities in a subsequent step. Taking advan-
tage of these techniques, many unfolded or poorly retic-
ulated peptides have been found in arthropod venoms
and have attracted attention because of their poten-
tial use in biotechnology both for the biological roles
they perform and as they can be easily synthesized and
engineered.

Despite the fact that the main efforts to prospect
new peptide scaffolds and functions in arthropod
venoms have focused on ion-channel targeting proteins,

a great potential of small peptides (<3 kDa) can
be perceived in proteomic studies of these venoms
[2,5,6,8].

VENOM PEPTIDOMICS AND STRUCTURE TO
FUNCTION APPROACHES

Although there is no clear definition about the ranging
size of a peptide, terming small proteins up to 10 kDa
as peptides is commonly acceptable. In the scope of this
review, peptidyl molecules up to 3 kDa are defined as
small peptides. It is interesting to note that within this
molecular mass range, peptides can be easily subjected
to MS/MS and/or Edman’s automated sequencing,
which facilitates the primary structure identification
and posterior synthesis.

Obtaining a molecular mass list (venom mass
fingerprinting), which functions as a static image
of the multicomponent venom, has become a good
practice in toxinology (Figure 1). Direct analysis using
matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) MS or coupling LC/MS, in both
off-line or on-line modes, have been used to photograph
whole venoms [2,5,6,9,13–15]. Such photos produce
valuable information on structural families that are
present in the studied venom.

In some cases, the first passage by a MS tech-
nique gives enough resolution to perform MS/MS de
novo sequencing without the necessity of LC fraction-
ation. Alternatively, venom can be subjected to LC
techniques prior to MS analysis and MS/MS sequenc-
ing to increase resolution and MS signal gaining
(Figure 1).
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Figure 1 Workflow chart with methodological strategies on the animal venom peptidomic approach for prospecting bioactive
molecules.
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De novo sequencing by MS/MS has become one
of the main analytical techniques to overcome diffi-
culties in both raw material gathering and peptide
isolation. By this technique, e.g. Konno and cowork-
ers [16] used only two venom sacs from the soli-
tary wasp Cyphononyx dorsalis to sequence two novel
peptides (Cd-125 and Cd-146) and the known pep-
tide Thr6-Bradykinin. Sequences were corroborated by
Edman’s degradation and by solid-phase synthesis.
More recently, Mendes and coworkers [17], by using the
LC/ESI-MS/MS (Electro-spray ionization mass spec-
trometry) technique, were able to sequence two novel
chemotactic and mastoparan peptides, named Agelaia-
CP and Agelaia-MP, which occurs in a low-level concen-
tration in the venom of the social wasp Agelaia pallipes
pallipes. Many other authors report the use of MS/MS
techniques to sequence low abundance peptides from
the whole venoms of arthropods [6,18,19], conus shells
[20,21], amphibian skin secretions [22] and snakes [23]
followed by chemical synthesis for further biological
characterizations.

BRADYKININ POTENTIATING PEPTIDES

Among the bioactive peptides found in animal venoms,
the Bradykinin Potentiating Peptides (BPPs) family is
by far the one that has received most attention over
the past decades. The history of this peptide family
began late in the 1960s when it was first observed
that Bothrops jararaca venom was able to enhance
the Bradykinin (BK) hypotensive effect [24]. The BPPs
were verified to act as Angiotensin Converting Enzyme
(ACE) inhibitors and were used as a novel prototype
of antihypertensive drug, leading to the development of
captopril [25], the first commercial ACE inhibitor and
probably one of the most successful examples of peptide
as a lead compound in the pharmaceutical industry.

Since then, many other BPPs were described in
different venoms from arthropods, amphibians and
snakes, most of them being ACE inhibitors (as reference
see [1]). In the case of BPPs isolated from snake
venoms, these molecules are recognizable by a common
structural pattern (Pyr-EXnPXPXIPP, where Pyr is
pyroglutamic acid and X is any amino acid residue),
with the C-terminus sequence PXIPP crucial for the
binding in the ACE catalytic site (for review see [23] and
[26]).

Surprisingly, many arachnid venoms have also been
reported to contain BPPs, although they do not share
the common structural pattern observed for snake
venoms, except by the fact that proline residues can be
found at the C-terminal ending. Ferreira et al. [27] have
isolated and characterized a molecule from the venom
of the Brazilian scorpion Tityus serrulatus that was
verified to potentiate the effects of BK on the isolated
guinea pig ileum preparation and on arterial blood
pressure in the anesthetized rats. Also, this peptide

inhibited the hydrolysis of both BK and angiotensin
I using in vitro assays. Interestingly, the described
sequence has high homology with the N-terminal
portion of TsIV, or Tityustoxin, an α-toxin known to
inhibit the Na+ current inactivation, prolonging the
action potential [28]. Structure-function studies are
in progress in our laboratory using peptide synthesis
envisaging a deeper knowledge on this structural
convergence, the results will be published later on.
Shortly after, Meki et al. [29] put on evidence a peptide
(peptide K12) found in the venom of the Egyptian
scorpion Buthus occitanus, which acts as BK potentiator
in smooth muscle preparations, by inhibiting ACE.
The peptide K12 is 21 residues-long and does not
share the main structural features of snake BPPs,
except by the presence of two proline residues at
the C-terminal region, which ends with an additional
alanine residue. A family of linear peptides that was
able to potentiate the BK hypotensive effect was put
on evidence by our group [30]. These peptides named
Tityus serrulatus Hypotensins (TsHpT) have molecular
masses ranging approximately from 1190 to 2700 Da
and are somehow related to peptide K12, but with
unique structural features. Structural and functional
studies on this family of peptides will be published
later on. Other arachnid BPPs – with unique structural
features – were reported to be found in the venom of
the scorpions Buthus martensii Karsch [31] and Leiurus
quinquestriatus [32] and spiders Scaptocosa raptoria
[33,34] and Latrodectus tredecimguttatus [35].

ANTIMICROBIAL PEPTIDES

If, on the one hand, BPPs were the first deeply observed
family of small peptides in animal venoms, on the
other hand, antimicrobial peptides may be considered
as the current excitement of toxinology in the recent
years. This is partially an outcome from a gold rush
to discover new chemical entities and scaffolds to deal
with emerging bacterial resistance [36] and partially
because it is becoming widely accepted that peptides
are an essential part of the innate immune system, and
therefore could be potentially used as antimicrobial
therapeutics [37].

Antimicrobial peptides can be classified into three
families according to different structural features: (i) α-
helical linear peptides, (ii) disulfide-bridged cyclic and
open-ended cyclic peptides and (iii) peptides whose
primary structures have a high content of some amino
acid residues (e.g. proline, glycine or histidine rich).
Most of these peptides adopt an amphipathic structure
with both cationic and hydrophobic properties that
facilitate their interaction with anionic cell walls and
membranes of microorganisms. Antimicrobial peptides
usually display a broad spectrum of action against
gram-positive and gram-negative bacteria, fungi and
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protozoa, and some of them have highly hemolytic and
insecticidal effects [38,39].

Most of the antimicrobial peptides described so far
are constitutive from hemolymph and only a few have
been found in venom gland secretion from arthropods.
Apart from some K+-channel blocker toxins, found in
scorpion venoms, which are structurally related to some
defensins [5,40], all of the so far isolated antimicrobial
peptides from arthropod venoms are linear amphipathic
peptides [18,41]; for review see Ref. 38.

Four linear peptides (IsCT, IsCT2, IsCTf and IsCt2f)
were isolated from the venom of the primitive scor-
pion Opisthacanthus madagascariensis [41,42]. The
authors have shown that IsCTf and IsCt2f are, in
fact, enzymatic fragments from IsCT, IsCT2. Inter-
estingly, both IsCTf and IsCt2f have shown to loose
their cytolytic activity and structure observed for IsCT,
IsCT2, which are amidated at C-terminus and are
able to adopt amphipathic structures in aqueous TFE
solution. Other antimicrobial α-helical peptides were
described from the venom of the scorpions Hadrurus
aztecus (hadrurin), Opistophtalmus carinatus (opisto-
porin 1 and 2), Parabuthus schlechteri (parabuto-
porin) and Pandinus imperator (pandinin 1 and 2)
[43–46].

From Hymenoptera venom, antimicrobial peptides
have been described in wasps [19], bees [47] and
ants [48]. The amino acid sequences of Anoplin – from
the venom of the solitary wasp Anoplius sumarien-
sis, and crabrolin, isolated from the venom of Vespa
crabro – have high similarity with the mastoparan-
X from Vespa xanthoptera venom and, in addi-
tion to the antimicrobial activity, these peptides
have also been described as mast cell degranulators
[19].

Antimicrobial α-helical peptides have also been
described in the venoms of spiders. Antimicrobial
peptides have been described from the venom of wolf
spiders Lycosa singoriensis [18], L. carolinensis [39], L.
erythrognatha [49] and Oxyopes kitabensis [50]. Kuhn-
Nentwig and coworkers [51] put on evidence a series
of linear peptides ranging from 3 to 4 kDa that display
high antimicrobial, hemolytic and insecticidal activities.

HORMONE-LIKE PEPTIDES

An emerging and important facet of peptidomics in
animal venoms is the crescent discovery of structures
related to peptidyl hormones. Despite the fact that
these low-represented small peptides do not display,
in most cases, any important observed effect from
the toxicological point of view, hormone-like peptides
seem to have an important role in the disturbance
of the steady-state of the inflicted victim. Together
with antimicrobial peptides, hormone-like peptides are
richly represented in amphibian skins (for reference see
[1,22,38]).

An increasing number of BK-like peptides have been
found in hymenoptera venoms. Venom from ants, social
and solitary wasps have been reported to contain
such peptides (for review see [52]). In the case of
solitary wasps, it was previously shown that BK-like
peptides (megascoliakinin and Thr6-BK) identified in
the venom of the scoliid wasps Megascolia flavifrons
and Colpa interrupta presynaptically block nicotinic
acetylcholine receptors in the insect central nervous
system [53,54]. By using MALDI-TOF MS, Konno and
coworkers [55] surveyed the venom of 26 species of
solitary wasps to assess the presence of kinins and they
were able to positively assign the presence of Thr6-BK in
four of them (Cyphononyx dorsalis, Megacampsomeris
prismatica, Campsomeriella annulata annulata and
Carinoscolia melanosoma fascinata). Because of this
synaptic blockage, these authors postulated that BK-
like peptides found in the venom of wasps play a
crucial role in paralyzing action for capturing prey.
Also, BK-like peptides cause severe pain when injected
into vertebrate animals, thus playing an important role
in the defense against predators [55].

Recently, our group reported the primary structures
of 15 isoforms of Phonetachykinins (PhTkP-I to PnTkP-
XV), a tachykinin-related family of peptides found in the
venom of the aggressive spider Phoneutria nigriventer
[6]. This family of peptides was first put on evidence
in the early 1990s when a fraction issued from gel
filtration chromatography of the whole P. nigriventer
venom, named Fraction M, was verified to be able to
induce smooth muscle contraction in guinea pig ileum
preparations [56]. Although there was an initial interest
to further work on this fraction at the time, attempts
to characterize these peptides were largely unfruitful,
both because of their low levels in the whole venom
and because their N-termini were somehow blocked
preventing the sequencing by Edman degradation.
This puzzle was recently solved by using MS/MS
de novo sequencing when all isoforms containing a
pyroglutamic acid residue at N-terminus was verified
[6]. Chemically synthesized peptides were constructed
to both corroborate the primary structure and to better
characterize their pharmacological properties (to be
published elsewhere). Tachykinin-related peptides are
widely distributed along the phylogenetic scale and
have been found in other animal venoms (for reference,
see [1]).

PEPTIDES TO DRUGS

Many aspects have to be observed to fulfill all require-
ments needed for a drug candidate to finish as a drug-
store shelf product, including storage and in vivo stabil-
ity, administration device and its suitability via, toxicol-
ogy, immunological aspects and, of course, pharmaco-
dynamic and pharmaco-kinetic aspects. Although a
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deeper discussion of these aspects is not in the scope
of this review, attention is drawn to in vivo stability and
administration which are two of the potential problems
of using peptides as drugs.

Peptides found in animal venoms are usually
secreted with an aim to reach a variety of targets
within the inflicted organism. For that reason, in vivo
chemical stability of such molecules has been tested
by millions of years of evolution in bloodstream and
other circulatory systems of invertebrate animals. To
achieve such stability, toxins from animal venoms rely
on some known posttranslational modifications such
as disulfide bridges [57,58], glycosylation [59] and
modified amino acid residues such as cyclization of
glutamine into pyroglutamic acid [6,23], amidation of
C-terminal residue [4,6,8,16–19,39,49,57], acetylation
[60] and others. Some other primary structure features
can also act as a protective shield against enzymatic
cleavages. This is promptly observed in proline rich
peptides or by duets of aminoacid residues such
as adjacent positive-negative charges (Pimenta et al.,
unpublished data). Amidation of C-terminal residue has
also been demonstrated to be important in enhancing
biological activity [61]. Besides stability, the potency
of the effect and specificity of the target may have
contributed to the success of such small peptides
as toxins. These factors would make it possible
for labile peptides to achieve a strong biological
effect despite a rather short half-life in the bodily
fluids.

Mimicking peptides or chemically modifying the
peptide structure can be of crucial importance to
increase in vivo stability of a proteinaceous drug.
In this way, the use of noncanonical amino acid
residues has been shown to be an interesting alterna-
tive [37,62]. To protect the protein structure, mimicking
the effect obtained by glycosylation rendering potential
enzymatic sites hidden, e.g. PEG-conjugation, lipo-
somes or micelles microreservoir delivery systems or
cyclodextrin-coated proteins were found to be advanta-
geous [63–66].

Proteinaceous drugs need suitable delivery sys-
tems in order to optimize absorption and bioavail-
ability. Injections using hypodermical needles have
been used for many years by insulin-dependent dia-
betic patients, while recombinant interferons (Intron,
Roferon, Avonex, Rebif and Betaferon) have also
been administered by injection route in patients suf-
fering from a variety of diseases, from viral infections
to cancer and multiple sclerosis [64]. In many cases,
injections must be given on a daily basis leading to a
high percentage of negligence in treatment. Painless
and easier methods for the administration of pep-
tidyl or proteinaceous drugs have been described with
relative success: oral, nasal, pulmonary, transdermal
patches, microorganisms and plant delivery systems
[63,65–71].

CONCLUDING REMARKS

Venoms and toxins from arthropods constitute rich
sources of molecules with high a therapeutical and
biotechnological potential, since many of them have
receptors, membranes and enzymes as primary molec-
ular targets. The use of proteomic approaches and mass
spectrometry has given a new dimension to toxinology,
increasing the possibilities of new bioactive peptides
that were neglected because of their low toxicity or
because of the lack of visible biological activity to be
discovered and characterized.

As compared to well-established state-of-the-art ion
channel-targeting toxins, the structural and biological
activity characterizations of small peptides from arthro-
pod venoms are in their early stages. Only recently,
attention has been drawn to the biotechnological poten-
tial of these molecules. The turning point for this was
the increasing capabilities of prospecting and charac-
terizing such small molecules from few amounts of
starting raw material, achieved by microscale analyti-
cal techniques and the recognition by pharmaceutical
industries that animal venoms can be a valuable source
of new drug candidates and novel scaffolds for lead
compounds. Also, the increasing research and applica-
tion efforts to improve peptidyl and proteinaceous drug
delivery systems are noteworthy.
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